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Abstract

A modified mixed variational principle for piezoelectric materials is established and the state-vector equation of pie-
zoelectric plates is deduced directly from the principle. Then the exact solution of the state-vector equation is simply
given, and based on the semi-analytical solution of the state-vector equation, a realistic mathematical model is proposed
for static analysis of a hybrid laminate and dynamic analysis of a clamped aluminum plate with piezoelectric patches.
Both the plate and patches are considered as two three-dimensional piezoelectric bodies, but the same linear quadrila-
teral element is used to discretize the plate and patches. This method accounts for the compatibility of generalized dis-
placements and generalized stresses on the interface between the plate and patches, and the transverse shear
deformation and the rotary inertia of the plate and patches are also considered in the global algebraic equation system.
Meanwhile, there is no restriction on the thickness of plate and patches. The model can be also modified to achieve a
semi-analytical solution for the transient responses to dynamic loadings and the vibration control of laminated plate
with piezoelectric patches or piezoelectric stiffeners.
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1. Introduction

Due to their wide application, the laminated piezoelectric plate, hybrid laminates, or the conventional
plate with piezoelectric sensor and actuator patches, as shown in Fig. 1, have stimulated considerable stud-
ies on the electric and mechanical behaviors of piezoelectric structures. For the piezoelectric laminates or
hybrid laminate, one of the main methods conducted is the exact solution. Because of their analytical nat-
ure, the exact solutions of static and vibrations analysis of the laminates are of particular value. These solu-
tions can predict exactly the static deformation, generalized stresses, the natural frequencies of the system
and the corresponding mode shapes, particularly, as the physical quantities are near or across the interface
of dissimilar material layers, and can thus be used to check the accuracy of various numerical methods for
more complicated problems (Pan and Heyliger, 2002). Meanwhile, the exact solutions can provide the dis-
tributions figures of generalized displacements and stresses. Most of the published works on the exact solu-
tions for laminated composite, the laminated piezoelectric beams/plates or the hybrid laminates can be
divided into two groups. The methods used in the first group (Ray et al., 1993a,b; Ray et al., 1998; Batra
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Fig. 1. Geometry of piezoelectric plates: (a) a hybrid laminate and (b) clamped smart plate with piezoelectric sensors/actuators.
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and Liang, 1997; Senthil and Batra, 2001; Heyliger, 1994, 1997; Heyliger and Saravanos, 1995; Heyliger and
Brooks, 1995, 1996) mostly follow the strategies of Pagano (1969, 1970, 1972). The second group (Lee and
Jiang, 1996; Aldraihem and Khdeir, 2003a,b; Vel and Batra, 2000; Pan, 2001; Pan and Heyliger, 2002; Ding
and Tang, 1999; Tarn, 2002; Wang et al., 2002, 2003; Chen et al., 2004) follows the strategies of Eshelby—
Stroh formulation or state-vector equation. The common feature of the strategies of the Eshelby—Stroh
formulation and the state-vector equation is that the generalized displacements and stresses are treated
simultaneously as the components of the multi-dimensional vector. Hence, the strategies can be called
mixed state variable techniques. One of advantages using the mixed state variable techniques to handle
composite laminates and piezoelectric laminates is the varying material and geometric properties along
the independent spatial variable are allowed, and anisotropic layered materials can be handled (Steele
and Kim, 1992; Ting, 1996). Another outstanding advantage is that the thick plates or laminated plates
problems can be treated without any displacements and stresses assumptions. Because of the transfer matrix
being employed, the order of the final algebra equation system is independent of the thickness and the
number of layers of a structure and the solution also provides a continuous transverse stresses field across
the thickness of multi-layered structures.

However, owing to the complexity of the governing equations in piezoelectricity, only a few simple prob-
lems such as simply supported beams and plates can be solved analytically. Just as Vel and Batra (2000)
pointed out, most the available references three-dimensional solutions mentioned above are restricted to
the piezoelectric laminates or the hybrid laminates whose edges are simply supported and electrically
grounded. Owing to the boundaries and geometric complexity of the practical system in engineering field,
it is inevitable that the finite element method (FEM) is required in the design and analysis of piezoelectric
structures. The finite element methods for piezoelectric bodies or its devices and adaptive structures can
handle numerically a bulk of problems in engineering field and has proved to be a powerful tool for the
design and analysis of piezoelectric devices.

A brief review on the finite element models of a structure with sensors and actuators can be found in Kim
et al. (1997). Benjeddou (2000) had surveyed the advances and discussed the trends in the formulations and
the applications of the finite element modeling of adaptive structural elements.

Because most of the finite element methods for piezoelectric problems are developed from traditional fi-
nite element methods, the existence of several issues similar to traditional finite element methods should be
noticed: on the one hand, the brick element to model devices as well as large structure regions results in com-
putational models that are artificially large and stiff. On the other hand, the brick element is too thick to
modelize very thin structures (Benjeddou, 2000). This motivates the development of one- and two-dimen-
sional elements for the design and analysis of piezoelectric devices. But most of them are free of electric Dofs,
standard finite elements are then used to compute mechanical behavior (displacement, strains, stresses), and
electric quantities (charge, current, potential) are deduced from the specific sensing/actuation relations.

In a word, there are many challenges in the numerically simulating the behavior of piezoelectric struc-
tures and devices where accuracy as well as efficiency of modeling is essential. For instance, traditional finite
element methods cannot provide a continuous transverse stresses field across the thickness of a multi-lay-
ered structure. The brick elements lead to unnatural stiffening of the plate and artificially high natural fre-
quencies and so on. On the other hand, at present, there are limited modules available for simulating the
behavior of piezoelectric structures and devices.

It is worthwhile to notice that the semi-analytical techniques are applied to handle the problems of gen-
eral composite laminates. The semi-analytical solution (Zou and Tang, 1995; Sheng and Ye, 2002) com-
bines the traditional finite element approximation (using linear quadrilateral element) with the recursive
formulation of the state-vector equation. The semi-analytical solution (Zou and Tang, 1995; Sheng and
Ye, 2002) inherits most of advantages in the exact solution of state-vector equation. For example, the
three-dimensional problem is transferred into the two-dimensional one. The number of variables of the final
algebra equation system is independent of the thickness and the number of layers of multi-layered structures;
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hence the number of variables is reduced greatly. On the other hand, the semi-analytical solution can also
provide continuous transverse stresses across all material interfaces.

It is significant to pursue and develop a semi-analytical solution combining the analytical and FEM
techniques for the complicated piezoelectric problems in engineering field.

It should be mentioned that Kim et al. (1997) proposed a novel model that 20-node brick elements are
used to model the piezoelectric device regions and nine-node flat-shell elements are used in the remaining
part of the plate and transient elements connect brick elements to flat-shell elements. The method has merits
in terms of accuracy and economy and was employed in the various vibration controls of piezoelectric
structures (Kim et al., 1996, 1997; Lim et al., 2002; Lim, 2003).

In the present work, on the basis of the modified mixed variation principle (Steele and Kim, 1992) for
elastic bodies, a similar modified mixed variational principle for piezoelectric material is established. The
state-vector equation of piezoelectric plates is derived directly through the use of the present variational
formulation. The explicit forms of the generalized displacements and stresses with respect to boundary
conditions are given. Then, the exact solution of the state-vector equation is simply given, and the semi-
analytical solution of the state-vector equation is achieved. Numerical studies for the static behavior of
piezoelectric laminates and the free vibration of a conventional plate with piezoelectric patches are inves-
tigated and compared with known results.

2. The formulations
2.1. The modified mixed H-R variational principle

The laminated plate with piezoelectric layer is shown in Fig. 1(a). The piezoelectric layers can be bonded
to the surface as well as embedded in the laminates. Assuming the material of each layer is orthotropic and

the orthotropic symmetry with respect to the coordinate planes, the linear constitutive equations are written
as the following matrix form:

Ox ¢, ¢, C3 0 0 0 0 0 ey 1 ( s

Oy n Cn G 0 0 0 0 0 ) Sy

0. C; Gy C;3 0 0 0 0 0 & S2

Ty o o o0 C, 0 0 0 €, 0 Sy

T p0=10 0 0 0 C4 0 ¢ 0 0 Se (1)
Ty 0 0 0 0 0 Cy O 0 0 Sy

D, 0 0 0 0 €5 0 —¢ 0 0 —E,

D, 0 0 0 ¢, 0 0 0 —&, 0 -E,

D. ey e, €3 0 0 0 0 0 —&;] | —E:

where, oy, 0, 0., T,., T, and 1, are the components of the stress respectively. C;j (i,j=1,2,3,4,5,06) are
elastic coefficients. E,E,, E. are the components of the electric field. D,,D,,D. are the electric displace-
ments; &, €5,, €3, €y, €5 and &), &,, €, are the piezoelectric, dielectric coefficients, respectively.
The relationships of the mechanical displacement—strain
Sy = ou, s, = ﬁva S, =YW, 8y, = .BW +yv (2)
Sy = OW + YU, Sy, = Pu + ow
in which u, v and w are the components of displacements and o« = 0/0x, f = 0/0y and y = 0/0z are differ-
ential operators.
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The electric field components can be related to the electric potential ¢
Ex=—ap E,=—-p¢ E =—y¢ (3)
Based on the method that Steele and Kim (1992) and Zhong (1995) established the modified mixed varia-

tional principle for elastic bodies, the modified mixed variational principle for three-dimensional piezoelec-
tric plates can be stated as

611—5/ {//LMRdQ}dZS/ {/ TT(QG)dF}dzS/Oh{/FGQTTdF}dz

—8/ QQTTdQ 5// Q'Td2 =0 (4)

where

h is the plate thickness

Q is the area of plate

r, is the generalized displacement boundary
I, is the generalized force boundary

Q is the top surface area of plate

Qp is the bottom surface area of plate

The superscript “T” denotes transposition.
The mechanical displacement and electric potential vector

Q=[u v w ¢]" Q=[a v w ¢]"

The mechanical stresses and electric displacement vector

T=(r, T, T. T,]' T=[T, T, T. T,]"

q

Lz =P"Q +P"(G|Q + @},G,Q) + ((GzQ) 0,G,Q - Q'QQ) - lPT(DUP Q'F (5)

where

P=[t. 7. 0. DZ]T;
F=1[f. f, f. f,]" denotes the generalized external load;
Q = dQ/dz.

The matrices Gy, Gy, @, @, ®,; and D,, are given in Appendix A.
2.2. The state-vector equation and its exact solution

In the following, assuming the side generalized stress boundaries are satisfied (T = T), and the side gen-
eralized displacement boundaries are satisfied (Q = Q). The variational manipulation (§IT = 0) of Eq. (4) is
performed without any deformation expression assumption.

Considering the variations of the t,., 7,., 6., D;,u,v,w and ¢, respectively, we obtain

X (G4 91G)Q - P =0
. (6)

P
-4 + (G| + G, ®3)P + (G} 96, - Q)Q —F =0
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The mechanical stresses and electric displacement of at the top surface and bottom surface
T=T=[nt. nit. no. n.D.| (7a)
in which
The mechanical stresses, electric displacement on the side boundary
v = ny(kpow + ki3 pv — kgo, — kioD.) + nykys(Pu + ow) + n.1,,
= nikis(Pu + ov) + ny (ko + ks fv — koo, — ki D.) + n.t,.

~|

(7b)

NN

= N Ty, + NyTy, + N.0;

Tq = I’qu(kmo(d) — ké‘sz) + I’lqy(k1706¢ — k7‘E}z) + I’quDZ
where n; (i =x,y,z) are the unit outward normal components related to mechanical quantities of the
boundary and n, (i =x,y,z) are the unit outward normal components related to electric quantities of

the boundary.
Eq. (6) can be recast into the state-vector form

d{P}_ A" B {P} {F} ®
zlQf | ¢ A|lQ 0
in which
0 0 kgOC kloa 0 0 —o keOC
0 0 kp kup 0 0 B kp
—AT =G + G0y = A=—(G +®;G) =
[ e e (1 +@,,G2) ke ko O 0
k(,OC k7ﬁ 0 0 kl()OC kllﬂ 0 0
—kpp0? — klsﬁ2 - sz —kizof — ks o 0 0
B—B' = G§<D22G2 _Q— —ki30f — ks o —/€14/3’2 — kyso — por? 0 0
0 0 —pw? 0
0 0 0 *kmazﬁZ - 1517/32
kk 0 0 O
0 k&K 0 O
C = CT = (Dll = ?
0 0 k3 ky
0 0 k4 ks
Note, owing to the integration by parts
0 0 0 0 «a 0 g 0 O
0 0 0 0 0 « 0 0
Gl = — gi—_|0 P
«a p 0 0 0 0 0 0 O
0 0 0 O 00 0 o fp

Eq. (8) is usually called the state-vector equation. Lee and Jiang (1996) also derived the equation from the
field equations for piezoelectricity, but it is not a simple task, especially in some areas such as shells of
piezoelectricity. This is one of reasons that we firstly establish the modified mixed variational principle
for three-dimensional piezoelectric plates.
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Of course, not just the plates or shell have the state space model, if the first-order and high-order beam
theories are used, the analytical solutions of the similar state space model for the plate of Fig. 1(b) with SS
boundaries can also be obtained with the aid of the state-space approach and Jordan canonical form

(Aldraihem and Khdeir, 2003a,b).
Consider a simply supported and multilayered rectangular piezoelectric laminates or hybrid laminates,

as shown in Fig. 1(a), the boundary conditions are

atx=0,a o,=w=v=¢=0 ©)
aty=0,b o, =w=u=¢=0

The state variables, which exactly satisfy the boundary conditions, can be expressed in the following form:

Z Zo Jcos(nx)sin({y) 1. Z Za’”" sin(nx) cos({y)

= i io:m( )sin(nx) sin({y) D. = i i ™" () sin(nx) sin({y)

. C (10)
u= Z Z”mn( ) cos(nx) sin({y) Z Z v (z) sin(nx) cos({y)
w= i iwmn( )sin(nx) sin({y) ¢ = Z Z @™ (z) sin(nx) sin({y)

where n = mIl/a, { = nll/b.
Substituting Eq. (10) into Eq. (8), a system of ordinary differential equations of arbitrary layer can be
expressed in the matrix form

E{P""%z) } :K{ P’""<0>}+{F'""<z>} )
dz1 Q" () Q" (0) 0
where
[0 0 ksn  kion k12772 + klsé‘:z - PCUZ kin + kisn 0 0 i
0 0 kol ki ki3l + kisnC kel + ks — pe? 0 0
n ¢ 0 0 0 0 —pw? 0
K — —ken —k:0 0 0 0 0 0 kien® + kir
ki 0 0 0 0 0 —n ken
0 k> 0 0 0 0 - k¢
0 0 ks  ky —kgn —kol 0 0
L 0 0 ke ks —kon —ki 0 0 i
The exact solution to Eq. (11) for kth layer is
Ry (z) = Ti(2)Ri(0) + Hi(2) (12)
in which

Ri(z) = [P"() Q™()]" Ri(0)=[P™(0) Q™(0)]"

T —exp(K2) Hule) = [ expl(K(:— )F™(r)de
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For static problem, if o, D. and ¢ applied on the surface of the plate are known complex function about x
and y, we can expand o, D. and ¢ into infinite double Fourier series and then adding the response together
term by term.

D’ ab// D,  sin(nx) sin({y) dxdy

mn
in which

o, D™ and ¢™" are the coefficients of the Fourier series.
a and b are the width and length of plate, respectively.

For free vibration, the boundary conditions on the top and bottom surfaces are traction free, which can
be state as

0:=T:=1.=0

In addition to the mechanical boundary condition, the electric surface conditions must be satisfied. When
the direct piezoelectric effect is considered, the surface of piezoelectric layer is charged free, D. = 0. While
the inverse piezoelectric effect is considered, the top and bottom surfaces of the piezoelectric layer are
grounded, ¢ = 0. These two cases are termed open and closed circuit, respectively.

2.3. Elemental state-vector equation

The structure is considered as an n-layered plate.

The field functions and the shape functions of a linear quadrilateral element, which has four-nodes and
eight-degree of freedom per node, are assumed as follows (Fig. 2 shows the local coordinate system of the
quadrilateral element)

u=[N@xy)Hu' @)} v= [N e} w=[NCxy)H{w(E)}

b= INEHFE} = NEIHEE) 5= N E) (13)
5. = NG D. = NGIDEE)
N(&n) =3 (1 () i=1,2,34 (14)

The discretization is employed in the x—y plane of a layer, as shown in Fig. 3(a).

=1

/

n=1 P=(n,{) \n=1

1
=1 N

Fig. 2. The local coordinate system of the linear quadrilateral element.
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Fig. 3. The element mesh of the plate and patches: (a) the element meshes of plate and (b) the element meshes of patches.

Substituting Eqgs. (13) and (14) into Eq. (4) and using & [ = 0 yields elemental state-vector equation

. OR(2)
Oz

The detailed forms of C* K¢, R(z), and G*(z) can be found in Appendix A.

The treatments on the various boundary conditions are similar to the approaches used in reference
(Sheng and Ye, 2002).

The standard finite element assemblage process is employed. Hence the global state-vector equation for
kth layer can be obtained

C

= K°R*(z) + G*(2) (15)

B _KR,(2) 1 6u(2) (16)
The exact solution to Eq. (16) is

R;(z) = Ty (z2)R(0) + Hy(2) (17)
in which

Tk = exp(CkKk . Z) Hk(Z) = /Z exp(CkKk(z — ‘L'))Cka(‘E) dr

Note that, the exponential matrix T(z) = exp(A - z) could be computed in many ways such as approxima-
tion theory, differential equations, the matrix eigenvalues, and the matrix characteristics polynomial and so
on. In practice, the consideration of computational stability, efficiency and accuracy indicates that some of
the methods are preferable to others, but none is completely satisfactory (Moler and Van, 1978). Hence, the
precise integration method (Zhong and Zhu, 1996; Zhong, 2001) is employed to solve Eq. (16).

In fact, Eq. (17) or Eq. (12) is available to every layer of laminates. In particular, for the case of z = 4;

R;(h;) = T;(h;)R;(0) + H,(h)) (18)
At the interface, the compatibility conditions can be written as
Rj(hj) =Ryu(hy) (j=12,....n-1) (19)
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Hence, the following recurrence formulation can be obtained:

R, (h,) = (ﬁ Ti) R, (0) + (ﬁ Ti) Hy(m) + (ﬁ Ti) Hy(hy) + -+ H,(h,) (20)
P ) =3

Eq. (20) can be recast into a matrix form

p p p p
{Pn<hn>}: [T“ TQHP1<0>}+{HG} (21a)
Q) S~ Ly 13l S T Ln
where superscript ‘p’ denotes the laminated plate; P1(0), Q,(0), P,(%,), Q,(h,) denote the generalized
stress vector and displacement vector at the top and bottom surfaces, respectively; H? and HP denote
the equivalent external load.
Eq. (21a) is the relationship of the physics quantities of top and bottom surface of an n-layered plate.
The patches are also considered as an /-layered plate, and assuming the element mesh in every layer is the

same as the shaded part of Fig. 3(a). The similar procedure above for the top and bottom patches is
performed, and yields following equations

P(h) _ T, T {PI(O‘P)}+ HY o)
Q (") T TS | 1 Q,(07) HY
Py | [T TR f Pio) HY?
{Qz<h5’p>}_ ™ 1|\ Qom [y (21¢)

where superscript ‘tp” and ‘bp’ denote the top and the bottom patches, respectively.
The generalized displacements and stresses on the interface between plate and piezoelectric patches must
be continuous. Uniting Egs. (21a)—(21c¢) yields

P T, T P(0 H,
{ (Z)}{ 11 12]{ ()}+{ } (22)
Q(z) Ty T Q(0) H,
For free vibration problems, the top surface and bottom surface are traction free. Hence, for open circuit
case, P(0) = P(z) = 0 and H, = H, = 0, the following equation can be derived from Eq. (22)
[T1]{Q(0)} =0 (23a)

For closed circuit case ¢ = 0, D, # 0, we exchange the locations of variables ¢; and D_; (i,j € k, i, j are node
number, and k is the total number of node), a new system of equations can be obtained

P’ T, T P'(0 H
tow) = wl{ow){i) @
Q'(z) T, Ty Q'(0) H,
Because of P'(0) = P'(z) = 0 and H, = H = 0, we have
[T,]{Q'(0)} =0 (23b)
To obtain the nontrivial solution of Eq. (23), the determinant of matrix T}, or T}, must be zero, namely
| T]z |: 0 or | T,IZ |: O (25)

The nature frequencies can be obtained from Eq. (25) through the use of bisection method (Johnston,
1982).
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As far as the static problems are concerned, Q = 0. Substituting the known values at the top and bottom
surface, the ultimate equation can be obtained

{Q(@)} = [Ta]{P(0)} + [T]{Q(0)} + {H,} (for open circuit case) (26)

{Q'(2)} = [T5{P'(0)} + [T,]{Q'(0)} + {H.} (for closed circuit case) (27)
In-plane quantities P, = [0, 0, T\, D, Dy]T can be evaluated by the following expression

P, = ®,P + 0»,G,Q (28)

3. Numerical validation and discussions
3.1. Example 1

Consider a rectangular simply supported piezoelectric laminate composed of PZT-4 on the top and
PVDF on the bottom. Both layers have the thickness 4 =0.0025 m with a =2b. The aspect ratio of
alH = 10 is studied. An applied distributed potential ¢ = 10 V/m? on the top surface with both top and
bottom surfaces traction free and D. = 0 (open-circuit case).

The material properties are listed in the following Table 1.

Table 2 shows when the total of elements of both the linear quadrilateral element and the brick element
SOLIDS in ANSYS®, which has eight-nodes and four-degree of freedom per node, is equal, the total of
degree of frees using present linear quadrilateral element is less than that using the brick element SOLIDS.

Fig. 4 shows the convergence rate of the linear quadrilateral element and the brick element SOLIDS.
When the total elements of present method and ANSYS method are the same (648), the presented solution
1S Wmax = 1.0531E—10 (m) and the absolute error is 1.444%; but the solution of ANSYS is
Wimax = 0.9927E— 10 (m) and the absolute error is 7.094%. When the total elements of ANSYS method

Table 1

Elastic, piezoelectric, and dielectric properties of piezoelectric materials

Property Cl Ch Chy Ch Cls Cy Clu Cls Cis

PVDF (GPa) 238.00 23.60 10.6 3.98 2.19 1.92 2.15 4.40 6.43

PZT-4 (GPa) 139.00 139.00 115.00 77.80 74.30 74.30 25.60 25.60 30.60

PZT-5H (GPa) 126.00 126.00 118.00 79.50 84.10 84.10 23.30 23.00 23.00
) e 3 ey €ls

PVDF (C/mz) -0.13 —-0.14 —0.28 —0.01 —0.01 - - - -

PZT-4 (C/m?) —5.20 —5.20 15.08 12.72 12.72 - - - -

PZT-5H (C/m2) —6.50 —6.50 233 17 17 - - - -
&/ &/ €53/

PVDF 12.50 11.98 11.98 - - - - - -

PZT-4 1475 1475 1300 - - - - - -

PZT-5H 1697.5 1697.5 1468.3 - - - - - -
Density

PVDF (kg/m?) - - _ - _ _ _ , 7
PZT-4 (kg/m®) - - - - _ _ _ _ _
PZT-5H (kg/m®) 7500 - - - - _ _ - _

Note: ¢ = 8.854 x 1072 F/m.
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Table 2
The max values wp,.x at the top surface (m =n =1)
Approaches Meshes, layers Total elements Total d.o.fs Wmnax (M) Absolute error (%)
Exact solution - - 8 1.0685e—10
Semi-analytical solution 36x18,2 648 5624 1.0531e—10 1.444
ANSYS, element: SOLID5 36x 18,2 648 8436 0.9927e—10 7.094
56 x 28, 6 1568 46284 1.0214e—10 4.408
1.06 T T T
1.05 R VAo b i R S SE—— i .....| —¥— Semi-analytical solution
2 : —%— ANSYS, element: SOLID 5
O - :
a
a 1.03 : ]
e S e e S e S ; s e
2 :
= 101 -
o -
T 1 Sl i
g 0.99 .
2
0.98 [ i e e B .
0.97 | ] | 1 I | i
o 200 400 600 800 1000 1200 1400 1600

Total elements

Fig. 4. The comparison of convergence rate.

is 46284, wy.x = 1.0214E—10 (m), the absolute error is 4.408%. Hence, it is obvious that the convergence
rate of present semi-analytical solution is faster than that of ANSYS. The same conclusion was point out by
Sheng and Ye (2002) who employed the similar linear quadrilateral element and used semi-analytical
solution to analyze the static problem of laminated composite plates.

3.2. Example 2

The natural frequencies of an aluminum clamped plate with piezoelectric sensors and actuators, as
shown in Fig. 1(b), is investigated. Assuming the sensors and actuators are bonded perfectly to the plate.
Sensors and actuators made of PZT-5H. The properties of PZT-5H are listed in Table 1. The polarity of
both sensors and actuator are in the positive transverse direction (z). The material of plate is aluminum,
modulus = 6.8E+10 N/m?, Poisson’s ratio = 0.32, density = 2800 kg/m">.

It can be noticed in Table 3 that, we use the same linear quadrilateral element and the same mesh density
(Lim et al., 2002) to discretize plate and piezoelectric patches, the natural frequencies are higher than those

Table 3
Comparison of natural frequencies (Hz) for a clamped smart plate with piezoelectric patches at the top and bottom surfaces
Approaches Meshes, layers Mode number (open circuit case)
Lim et al. (2002)
Plate Big patches  Small patches 1 2 3 4 5 6 7
Present 12x12, 1 2x%x2,1 Ix1,1 704 150.5 2202 2544  290.6 3348 -
12x12,1  2x2,1 Ix1,1 71.6 1522 2237  259.1 2977 3436 4547

20x 20, 1 4x4,1 2x2,1 69.6 148.2 2178  251.6  286.7 3285 4422




1400 G. Qing et al. | International Journal of Solids and Structures 43 (2006) 1388—1403

obtained by Lim et al. (2002). In reference (Lim et al., 2002), most part of plate was modeled by 9-node shell
elements, the transition portions were modeled by 13-node transition element, the parts of plate between
sensor and actuator were modeled by 20-node brick element. It is well-known that the 20-node brick ele-
ment, the 13-node hexahedron element and the 9-node flat-shell element lead to less unnatural stiffening of
the structure and yield better results than do the 8-node brick element, the 6-node hexahedron and the
4-node flat-shell element.

The results in Table 3 also indicate that, as the mesh density increases, the present method yields more
accurate results.

4. Conclusions

In this paper, a realistic mathematical model for the static and dynamic analysis of a plate with piezo-
electric patches is introduced. In this model, the plate and the piezoelectric patches are discretized by the
same linear quadrilateral element. The linear algebraic equations of the plate and piezoelectric patches
are established independently. The compatibility of generalized displacements and generalized stresses at
the interface between the plate and patches are maintained through uniting the algebraic equation of both
of them. The results of the numerical examples show that the current approach offers good predictive capa-
bility. Based upon the mathematical model studied in this paper, the following remarks can be made:

1. The number of variables included in the global linear equation of the structures has no relationship with
the thickness of plate and the thickness or/and the number of patches.

2. There is no restriction on the thickness of plate or piezoelectric patches.

. The transverse shear deformation and the rotary inertia are considered in the current model.

4. The semi-analytical solution can also provide continuous generalized stresses and generalized displace-
ments at the interface between plate and piezoelectric patches.

98]

The presented method will be modified to achieve a semi-analytical solution for the transient responses
to dynamic loading and the vibration control of the laminated plates with piezoelectric patches or piezo-
electric stiffeners.
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Appendix A

The matrices Gy, G,, @11, @5, ®>;, Py, and Q in Eq. (8)

o 0 0 0
0 0 o O
0 0 0
G 0.0 601 ¢ B 0 0
1= 2 = ol
0 0 00
0 0 0 «
00 00
000 B
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0 0 0 k¢ O [F ks 0000
0 0 0 06 k fia ko 0000
(Dlzz—(I)T: ! (Dzzzq)T: 0 0 k15 0 0
2 ks ke 0 0 0 2
0 0 0 ke O
kio ku 0 0 O
L0 0 0 0 kpy
kk 0 0 O pw’ 0 0 T
0 k& 0 0 0 20
D, = ’ Q= peo
0 k3 k4 0 0 p0)2 0
0 0 k4 ks 0 0 0 0]

ki =1/C k=1/Cs k=Chuey+efy k=ey/k ki=ey/k
ks = —Clh/k ke = —e\5/Css k1 =—e5/Cly

ks = —(Clsehs + €hsely) [k kg = —(Chaely + €53¢5) /k

kio = —(Clzeys — Ciely) [k ki = —(Cheyy — Ciély) [k

kin = Cjy — ((Claey; + €33¢5,)Cl3 — (Chyey; — Cely ey, )k

ki3 = Cyy — ((Claey; + €335))Chy — (Clely — Ciyely Jedy) [k

ki = Cyy — ((Chaeys — €3365,)Cy — (Chzeyy — Cyely)edy) [k

kis = Cis kis =~y — €5/Chs kip = —eyy — €5,/ C
Eq. (15) has the following form:
[ML’ 0 }Q{P"(Z) } B [K K;HPW%{F"(@}
0 M°|dz [ Q°2) K5, K51 1Q°0) 0
where

][]

o) @]

P =0 () 6l DA QR =[u() v(E) wi) ¢@)]

e __ : T —
M —//dlag(NN)|J|dfdn J=

0 0 —ksNTaN  —koNTAN
. 0 0 —k NTaN  —k NTAN . o T
K1, :// NToN NTﬁN 0 0 | J | dédn K3, = —[Kj)]
| —k¢NTaN  —k;NTSN 0 0
[k NTN 0 0 0
0 kNTN 0 0
K = J| déd
21 / / 0 0 KLN'N NN | TTdedn
L 0 0 NTN kNN
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a— po*N'N b 0 0
¢ d — po®™N'N 0 0
K¢, = J | déd
" / / 0 0 —pw®N'N 0 [Tl dedy
0 0 0 k16eNTaN + k17 NTAN

a = koNTaN + ks ANTEN b = ki3aNT N + ks pNToN o0
o
¢ = ki3NTaN + ksaNTAN  d = k14 SNTSN + kysaNTaN { } = J‘{ }
e T T T T ¢ B 6/67/
F =—[[[NTf, N'f, N'f. NTf]|J|dédy
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