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Abstract

A modified mixed variational principle for piezoelectric materials is established and the state-vector equation of pie-
zoelectric plates is deduced directly from the principle. Then the exact solution of the state-vector equation is simply
given, and based on the semi-analytical solution of the state-vector equation, a realistic mathematical model is proposed
for static analysis of a hybrid laminate and dynamic analysis of a clamped aluminum plate with piezoelectric patches.
Both the plate and patches are considered as two three-dimensional piezoelectric bodies, but the same linear quadrila-
teral element is used to discretize the plate and patches. This method accounts for the compatibility of generalized dis-
placements and generalized stresses on the interface between the plate and patches, and the transverse shear
deformation and the rotary inertia of the plate and patches are also considered in the global algebraic equation system.
Meanwhile, there is no restriction on the thickness of plate and patches. The model can be also modified to achieve a
semi-analytical solution for the transient responses to dynamic loadings and the vibration control of laminated plate
with piezoelectric patches or piezoelectric stiffeners.
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1. Introduction

Due to their wide application, the laminated piezoelectric plate, hybrid laminates, or the conventional
plate with piezoelectric sensor and actuator patches, as shown in Fig. 1, have stimulated considerable stud-
ies on the electric and mechanical behaviors of piezoelectric structures. For the piezoelectric laminates or
hybrid laminate, one of the main methods conducted is the exact solution. Because of their analytical nat-
ure, the exact solutions of static and vibrations analysis of the laminates are of particular value. These solu-
tions can predict exactly the static deformation, generalized stresses, the natural frequencies of the system
and the corresponding mode shapes, particularly, as the physical quantities are near or across the interface
of dissimilar material layers, and can thus be used to check the accuracy of various numerical methods for
more complicated problems (Pan and Heyliger, 2002). Meanwhile, the exact solutions can provide the dis-
tributions figures of generalized displacements and stresses. Most of the published works on the exact solu-
tions for laminated composite, the laminated piezoelectric beams/plates or the hybrid laminates can be
divided into two groups. The methods used in the first group (Ray et al., 1993a,b; Ray et al., 1998; Batra
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Fig. 1. Geometry of piezoelectric plates: (a) a hybrid laminate and (b) clamped smart plate with piezoelectric sensors/actuators.
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and Liang, 1997; Senthil and Batra, 2001; Heyliger, 1994, 1997; Heyliger and Saravanos, 1995; Heyliger and
Brooks, 1995, 1996) mostly follow the strategies of Pagano (1969, 1970, 1972). The second group (Lee and
Jiang, 1996; Aldraihem and Khdeir, 2003a,b; Vel and Batra, 2000; Pan, 2001; Pan and Heyliger, 2002; Ding
and Tang, 1999; Tarn, 2002; Wang et al., 2002, 2003; Chen et al., 2004) follows the strategies of Eshelby–
Stroh formulation or state-vector equation. The common feature of the strategies of the Eshelby–Stroh
formulation and the state-vector equation is that the generalized displacements and stresses are treated
simultaneously as the components of the multi-dimensional vector. Hence, the strategies can be called
mixed state variable techniques. One of advantages using the mixed state variable techniques to handle
composite laminates and piezoelectric laminates is the varying material and geometric properties along
the independent spatial variable are allowed, and anisotropic layered materials can be handled (Steele
and Kim, 1992; Ting, 1996). Another outstanding advantage is that the thick plates or laminated plates
problems can be treated without any displacements and stresses assumptions. Because of the transfer matrix
being employed, the order of the final algebra equation system is independent of the thickness and the
number of layers of a structure and the solution also provides a continuous transverse stresses field across
the thickness of multi-layered structures.

However, owing to the complexity of the governing equations in piezoelectricity, only a few simple prob-
lems such as simply supported beams and plates can be solved analytically. Just as Vel and Batra (2000)
pointed out, most the available references three-dimensional solutions mentioned above are restricted to
the piezoelectric laminates or the hybrid laminates whose edges are simply supported and electrically
grounded. Owing to the boundaries and geometric complexity of the practical system in engineering field,
it is inevitable that the finite element method (FEM) is required in the design and analysis of piezoelectric
structures. The finite element methods for piezoelectric bodies or its devices and adaptive structures can
handle numerically a bulk of problems in engineering field and has proved to be a powerful tool for the
design and analysis of piezoelectric devices.

A brief review on the finite element models of a structure with sensors and actuators can be found in Kim
et al. (1997). Benjeddou (2000) had surveyed the advances and discussed the trends in the formulations and
the applications of the finite element modeling of adaptive structural elements.

Because most of the finite element methods for piezoelectric problems are developed from traditional fi-
nite element methods, the existence of several issues similar to traditional finite element methods should be
noticed: on the one hand, the brick element to model devices as well as large structure regions results in com-
putational models that are artificially large and stiff. On the other hand, the brick element is too thick to
modelize very thin structures (Benjeddou, 2000). This motivates the development of one- and two-dimen-
sional elements for the design and analysis of piezoelectric devices. But most of them are free of electric Dofs,
standard finite elements are then used to compute mechanical behavior (displacement, strains, stresses), and
electric quantities (charge, current, potential) are deduced from the specific sensing/actuation relations.

In a word, there are many challenges in the numerically simulating the behavior of piezoelectric struc-
tures and devices where accuracy as well as efficiency of modeling is essential. For instance, traditional finite
element methods cannot provide a continuous transverse stresses field across the thickness of a multi-lay-
ered structure. The brick elements lead to unnatural stiffening of the plate and artificially high natural fre-
quencies and so on. On the other hand, at present, there are limited modules available for simulating the
behavior of piezoelectric structures and devices.

It is worthwhile to notice that the semi-analytical techniques are applied to handle the problems of gen-
eral composite laminates. The semi-analytical solution (Zou and Tang, 1995; Sheng and Ye, 2002) com-
bines the traditional finite element approximation (using linear quadrilateral element) with the recursive
formulation of the state-vector equation. The semi-analytical solution (Zou and Tang, 1995; Sheng and
Ye, 2002) inherits most of advantages in the exact solution of state-vector equation. For example, the
three-dimensional problem is transferred into the two-dimensional one. The number of variables of the final
algebra equation system is independent of the thickness and the number of layers of multi-layered structures;
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hence the number of variables is reduced greatly. On the other hand, the semi-analytical solution can also
provide continuous transverse stresses across all material interfaces.

It is significant to pursue and develop a semi-analytical solution combining the analytical and FEM
techniques for the complicated piezoelectric problems in engineering field.

It should be mentioned that Kim et al. (1997) proposed a novel model that 20-node brick elements are
used to model the piezoelectric device regions and nine-node flat-shell elements are used in the remaining
part of the plate and transient elements connect brick elements to flat-shell elements. The method has merits
in terms of accuracy and economy and was employed in the various vibration controls of piezoelectric
structures (Kim et al., 1996, 1997; Lim et al., 2002; Lim, 2003).

In the present work, on the basis of the modified mixed variation principle (Steele and Kim, 1992) for
elastic bodies, a similar modified mixed variational principle for piezoelectric material is established. The
state-vector equation of piezoelectric plates is derived directly through the use of the present variational
formulation. The explicit forms of the generalized displacements and stresses with respect to boundary
conditions are given. Then, the exact solution of the state-vector equation is simply given, and the semi-
analytical solution of the state-vector equation is achieved. Numerical studies for the static behavior of
piezoelectric laminates and the free vibration of a conventional plate with piezoelectric patches are inves-
tigated and compared with known results.
2. The formulations

2.1. The modified mixed H-R variational principle

The laminated plate with piezoelectric layer is shown in Fig. 1(a). The piezoelectric layers can be bonded
to the surface as well as embedded in the laminates. Assuming the material of each layer is orthotropic and
the orthotropic symmetry with respect to the coordinate planes, the linear constitutive equations are written
as the following matrix form:
rx

ry

rz

syz
sxz
sxy
Dx

Dy

Dz

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

¼

C0
11 C0

12 C0
13 0 0 0 0 0 e031

C0
12 C0

22 C0
23 0 0 0 0 0 e032

C0
13 C0

23 C0
33 0 0 0 0 0 e033

0 0 0 C0
44 0 0 0 e024 0

0 0 0 0 C0
55 0 e015 0 0

0 0 0 0 0 C0
66 0 0 0

0 0 0 0 e015 0 �e011 0 0

0 0 0 e024 0 0 0 �e022 0

e031 e032 e033 0 0 0 0 0 �e033

2
66666666666666664

3
77777777777777775

sx
sy
sz
syz
sxz
sxy
�Ex

�Ey

�Ez

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

ð1Þ
where, rx, ry, rz, syz, sxz and sxy are the components of the stress respectively. C0
ij ði; j ¼ 1; 2; 3; 4; 5; 6Þ are

elastic coefficients. Ex;Ey ;Ez are the components of the electric field. Dx;Dy ;Dz are the electric displace-
ments; e031; e032; e033; e024; e015 and e011; e022; e033 are the piezoelectric, dielectric coefficients, respectively.

The relationships of the mechanical displacement–strain
sx ¼ au; sy ¼ bv; sz ¼ cw; syz ¼ bwþ cv

sxz ¼ awþ cu; sxy ¼ buþ av
ð2Þ
in which u, v and w are the components of displacements and a ¼ o=ox; b ¼ o=oy and c ¼ o=oz are differ-
ential operators.
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The electric field components can be related to the electric potential /

Ex ¼ �a/ Ey ¼ �b/ Ez ¼ �c/ ð3Þ
Based on the method that Steele and Kim (1992) and Zhong (1995) established the modified mixed varia-
tional principle for elastic bodies, the modified mixed variational principle for three-dimensional piezoelec-
tric plates can be stated as
dP ¼ d
Z h

0

Z Z
X
LMR dX

� �
dz� d

Z h

0

Z
Cu

TTðQ�QÞdC
� �

dz� d
Z h

0

Z
Cr

QTTdC

� �
dz

� d
Z Z

Xt

QTTdX� d
Z Z

Xb

QTTdX ¼ 0 ð4Þ
where

h is the plate thickness
X is the area of plate
Cu is the generalized displacement boundary
Cr is the generalized force boundary
Xt is the top surface area of plate
Xb is the bottom surface area of plate

The superscript �T� denotes transposition.
The mechanical displacement and electric potential vector
Q ¼ ½ u v w / �T Q ¼ ½ �u �v �w �/ �T
The mechanical stresses and electric displacement vector
T ¼ ½ T x T y T z T q �T T ¼ ½ T x T y T z T q �T

LMR ¼ PT _Qþ PTðG1QþUT
21G2QÞ þ 1

2
ððG2QÞTU22G2Q�QTXQÞ � 1

2
PTU11P�QTF ð5Þ
where

P ¼ ½ sxz syz rz Dz �T;
F ¼ ½ fx fy fz fq �T denotes the generalized external load;
_Q ¼ dQ=dz.

The matrices G1, G2, U11, U12, U21 and U22 are given in Appendix A.

2.2. The state-vector equation and its exact solution

In the following, assuming the side generalized stress boundaries are satisfied ðT ¼ TÞ, and the side gen-
eralized displacement boundaries are satisfied ðQ ¼ QÞ. The variational manipulation ðdP ¼ 0Þ of Eq. (4) is
performed without any deformation expression assumption.

Considering the variations of the sxz; syz; rz;Dz; u; v;w and /, respectively, we obtain
dQ

dz
þ ðG1 þUT

21G2ÞQ�U11P ¼ 0

� dP

dz
þ ðGT

1 þGT
2U21ÞPþ ðGT

2U22G2 �XÞQ� F ¼ 0

ð6Þ
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The mechanical stresses and electric displacement of at the top surface and bottom surface
T ¼ T ¼ nz�sxz nz�syz nz�rz nqzDz

� �T ð7aÞ
in which
The mechanical stresses, electric displacement on the side boundary
T x ¼ nxðk12auþ k13bv� k8rz � k10DzÞ þ nyk15ðbuþ avÞ þ nzsxz

T y ¼ nxk15ðbuþ avÞ þ nyðk13auþ k14bv� k9rz � k11DzÞ þ nzsyz

T z ¼ nxsxz þ nysyz þ nzrz

T q ¼ nqxðk16a/� k6sxzÞ þ nqyðk17a/� k7syzÞ þ nqzDz

ð7bÞ
where ni ði ¼ x; y; zÞ are the unit outward normal components related to mechanical quantities of the
boundary and nqi ði ¼ x; y; zÞ are the unit outward normal components related to electric quantities of
the boundary.

Eq. (6) can be recast into the state-vector form
d

dz

P

Q

� �
¼ �AT B

C A

" #
P

Q

� �
�

F

0

� �
ð8Þ
in which
�AT ¼ GT
1 þGT

2U21 ¼

0 0 k8a k10a

0 0 k9b k11b

�a �b 0 0

k6a k7b 0 0

2
6664

3
7775 A ¼ �ðG1 þUT

21G2Þ ¼

0 0 �a k6a

0 0 �b k7b

k8a k9b 0 0

k10a k11b 0 0

2
6664

3
7775

B¼ BT ¼GT
2U22G2 �X¼

�k12a2 � k15b
2 � qx2 �k13ab� k15ba 0 0

�k13ab� k15ba �k14b
2 � k15a2 � qx2 0 0

0 0 �qx2 0

0 0 0 �k16a2b
2 � k17b

2

2
6664

3
7775

C ¼ CT ¼ U11 ¼

k1 0 0 0

0 k2 0 0

0 0 k3 k4
0 0 k4 k5

2
6664

3
7775
Note, owing to the integration by parts
GT
1 ¼ �

0 0 0 0

0 0 0 0

a b 0 0

0 0 0 0

2
6664

3
7775 GT

2 ¼ �

a 0 b 0 0

0 b a 0 0

0 0 0 0 0

0 0 0 a b

2
6664

3
7775
Eq. (8) is usually called the state-vector equation. Lee and Jiang (1996) also derived the equation from the
field equations for piezoelectricity, but it is not a simple task, especially in some areas such as shells of
piezoelectricity. This is one of reasons that we firstly establish the modified mixed variational principle
for three-dimensional piezoelectric plates.
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Of course, not just the plates or shell have the state space model, if the first-order and high-order beam
theories are used, the analytical solutions of the similar state space model for the plate of Fig. 1(b) with SS
boundaries can also be obtained with the aid of the state-space approach and Jordan canonical form
(Aldraihem and Khdeir, 2003a,b).

Consider a simply supported and multilayered rectangular piezoelectric laminates or hybrid laminates,
as shown in Fig. 1(a), the boundary conditions are
at x ¼ 0; a rx ¼ w ¼ v ¼ / ¼ 0

at y ¼ 0; b ry ¼ w ¼ u ¼ / ¼ 0
ð9Þ
The state variables, which exactly satisfy the boundary conditions, can be expressed in the following form:
sxz ¼
X1
m

X1
n

rmn
xz ðzÞ cosðgxÞ sinðfyÞ syz ¼

X1
m

X1
n

rmn
yz ðzÞ sinðgxÞ cosðfyÞ

sz ¼
X1
m

X1
n

rmn
z ðzÞ sinðgxÞ sinðfyÞ Dz ¼

X1
m

X1
n

Dmn
z ðzÞ sinðgxÞ sinðfyÞ

u ¼
X1
m

X1
n

umnðzÞ cosðgxÞ sinðfyÞ v ¼
X1
m

X1
n

vmnðzÞ sinðgxÞ cosðfyÞ

w ¼
X1
m

X1
n

wmnðzÞ sinðgxÞ sinðfyÞ / ¼
X1
m

X1
n

/mnðzÞ sinðgxÞ sinðfyÞ

ð10Þ
where g ¼ mP=a; f ¼ nP=b.
Substituting Eq. (10) into Eq. (8), a system of ordinary differential equations of arbitrary layer can be

expressed in the matrix form
d

dz

PmnðzÞ
QmnðzÞ

� �
¼ K

Pmnð0Þ
Qmnð0Þ

� �
þ

FmnðzÞ
0

� �
ð11Þ
where
K ¼

0 0 k8g k10g k12g2 þ k15f
2 � qx2 k13gfþ k15gf 0 0

0 0 k9f k11f k13gfþ k15gf k14f
2 þ k15g2 � qx2 0 0

g f 0 0 0 0 �qx2 0

�k6g �k7f 0 0 0 0 0 k16g2 þ k17f
2

k1 0 0 0 0 0 �g k6g

0 k2 0 0 0 0 �f k7f

0 0 k3 k4 �k8g �k9f 0 0

0 0 k4 k5 �k10g �k11f 0 0

2
66666666666664

3
77777777777775
The exact solution to Eq. (11) for kth layer is
RkðzÞ ¼ TkðzÞRkð0Þ þHkðzÞ ð12Þ

in which
RkðzÞ ¼ ½PmnðzÞ QmnðzÞ �T Rkð0Þ ¼ ½Pmnð0Þ Qmnð0Þ �T

TkðzÞ ¼ expðK � zÞ HkðzÞ ¼
Z z

0

expðKðz� sÞÞFmnðsÞds
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For static problem, if rz, Dz and / applied on the surface of the plate are known complex function about x
and y, we can expand rz, Dz and / into infinite double Fourier series and then adding the response together
term by term.
rmn
z

Dmn
z

/mn

8><
>:

9>=
>; ¼ 4

ab

Z a

0

Z b

0

rz

Dz

/

8><
>:

9>=
>; sinðgxÞ sinðfyÞdxdy
in which

rmn
z ; Dmn

z and /mn are the coefficients of the Fourier series.
a and b are the width and length of plate, respectively.

For free vibration, the boundary conditions on the top and bottom surfaces are traction free, which can
be state as
rz ¼ sxz ¼ syz ¼ 0
In addition to the mechanical boundary condition, the electric surface conditions must be satisfied. When
the direct piezoelectric effect is considered, the surface of piezoelectric layer is charged free, Dz ¼ 0. While
the inverse piezoelectric effect is considered, the top and bottom surfaces of the piezoelectric layer are
grounded, / ¼ 0. These two cases are termed open and closed circuit, respectively.

2.3. Elemental state-vector equation

The structure is considered as an n-layered plate.
The field functions and the shape functions of a linear quadrilateral element, which has four-nodes and

eight-degree of freedom per node, are assumed as follows (Fig. 2 shows the local coordinate system of the
quadrilateral element)
u ¼ ½Nðx; yÞ�fueðzÞg v ¼ ½Nðx; yÞ�fveðzÞg w ¼ ½Nðx; yÞ�fweðzÞg
/ ¼ ½Nðx; yÞ�f/eðzÞg sxz ¼ ½Nðx; yÞ�fsexzðzÞg syz ¼ ½Nðx; yÞ�fseyzðzÞg
rz ¼ ½Nðx; yÞ�fre

zðzÞg Dz ¼ ½Nðx; yÞ�fDe
zðzÞg

ð13Þ

Niðn; gÞ ¼
1

4
ð1þ ninÞð1þ gigÞ i ¼ 1; 2; 3; 4 ð14Þ
The discretization is employed in the x–y plane of a layer, as shown in Fig. 3(a).
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Fig. 2. The local coordinate system of the linear quadrilateral element.
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Substituting Eqs. (13) and (14) into Eq. (4) and using d
Q

¼ 0 yields elemental state-vector equation
Ce oR
eðzÞ
oz

¼ KeReðzÞ þGeðzÞ ð15Þ
The detailed forms of Ce;Ke;ReðzÞ, and Ge(z) can be found in Appendix A.
The treatments on the various boundary conditions are similar to the approaches used in reference

(Sheng and Ye, 2002).
The standard finite element assemblage process is employed. Hence the global state-vector equation for

kth layer can be obtained
Ck
oRkðzÞ
oz

¼ KkRkðzÞ þGkðzÞ ð16Þ
The exact solution to Eq. (16) is
RkðzÞ ¼ TkðzÞRð0Þ þHkðzÞ ð17Þ
in which
Tk ¼ expðCkKk � zÞ HkðzÞ ¼
Z z

0

expðCkKkðz� sÞÞCkGkðsÞds
Note that, the exponential matrix TðzÞ ¼ expðA � zÞ could be computed in many ways such as approxima-
tion theory, differential equations, the matrix eigenvalues, and the matrix characteristics polynomial and so
on. In practice, the consideration of computational stability, efficiency and accuracy indicates that some of
the methods are preferable to others, but none is completely satisfactory (Moler and Van, 1978). Hence, the
precise integration method (Zhong and Zhu, 1996; Zhong, 2001) is employed to solve Eq. (16).

In fact, Eq. (17) or Eq. (12) is available to every layer of laminates. In particular, for the case of z ¼ hj
RjðhjÞ ¼ TjðhjÞRjð0Þ þHjðhjÞ ð18Þ
At the interface, the compatibility conditions can be written as
RjðhjÞ ¼ Rjþ1ðhjÞ ðj ¼ 1; 2; . . . ; n� 1Þ ð19Þ
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Hence, the following recurrence formulation can be obtained:
RnðhnÞ ¼
Yn
i¼1

Ti

 !
R1ð0Þ þ

Yn
i¼2

Ti

 !
H1ðh1Þ þ

Yn
i¼3

Ti

 !
H2ðh2Þ þ � � � þHnðhnÞ ð20Þ
Eq. (20) can be recast into a matrix form
PnðhpnÞ
QnðhpnÞ

� �
¼

Tp
11 Tp

12

T
p
21 T

p
22

� �
P1ð0Þ
Q1ð0Þ

� �
þ

Hp
r

Hp
u

� �
ð21aÞ
where superscript �p� denotes the laminated plate; P1ð0Þ; Q1ð0Þ; PnðhnÞ; QnðhnÞ denote the generalized
stress vector and displacement vector at the top and bottom surfaces, respectively; Hp

r and Hp
u denote

the equivalent external load.
Eq. (21a) is the relationship of the physics quantities of top and bottom surface of an n-layered plate.
The patches are also considered as an l-layered plate, and assuming the element mesh in every layer is the

same as the shaded part of Fig. 3(a). The similar procedure above for the top and bottom patches is
performed, and yields following equations
Plðhtpl Þ
Qlðhtpl Þ

( )
¼ T

tp
11 T

tp
12

Ttp
21 Ttp

22

" #
P1ð0tpÞ
Q1ð0tpÞ

� �
þ

Htp
r

Htp
u

( )
ð21bÞ

Plðhbpl Þ
Qlðhbpl Þ

( )
¼

Tbp
11 Tbp

12

Tbp
21 Tbp

22

" #
P1ð0bpÞ
Q1ð0bpÞ

( )
þ Hbp

r

Hbp
u

( )
ð21cÞ
where superscript �tp� and �bp� denote the top and the bottom patches, respectively.
The generalized displacements and stresses on the interface between plate and piezoelectric patches must

be continuous. Uniting Eqs. (21a)–(21c) yields
PðzÞ
QðzÞ

� �
¼

T11 T12

T21 T22

� �
Pð0Þ
Qð0Þ

� �
þ

Hr

Hu

� �
ð22Þ
For free vibration problems, the top surface and bottom surface are traction free. Hence, for open circuit
case, Pð0Þ ¼ PðzÞ ¼ 0 and Hr ¼ Hu ¼ 0, the following equation can be derived from Eq. (22)
½T12�fQ1ð0Þg ¼ 0 ð23aÞ
For closed circuit case / = 0, Dz 5 0, we exchange the locations of variables /i and Dzj (i, j 2 k, i, j are node
number, and k is the total number of node), a new system of equations can be obtained
P0ðzÞ
Q0ðzÞ

� �
¼

T0
11 T0

12

T0
21 T0

22

� �
P0ð0Þ
Q0ð0Þ

� �
þ

H0
r

H0
u

� �
ð24Þ
Because of P0ð0Þ ¼ P0ðzÞ ¼ 0 and H0
r ¼ H0

u ¼ 0, we have
½T0
12�fQ

0ð0Þg ¼ 0 ð23bÞ

To obtain the nontrivial solution of Eq. (23), the determinant of matrix T12 or T

0
12 must be zero, namely
j T12 j¼ 0 or j T0
12 j¼ 0 ð25Þ
The nature frequencies can be obtained from Eq. (25) through the use of bisection method (Johnston,
1982).
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As far as the static problems are concerned, X ¼ 0. Substituting the known values at the top and bottom
surface, the ultimate equation can be obtained
Table
Elastic

Proper

PVDF
PZT-4
PZT-5

PVDF
PZT-4
PZT-5

PVDF
PZT-4
PZT-5

PVDF
PZT-4
PZT-5

Note:
fQðzÞg ¼ ½T21�fPð0Þg þ ½T22�fQð0Þg þ fHug ðfor open circuit caseÞ ð26Þ

fQ0ðzÞg ¼ ½T0
21�fP0ð0Þg þ ½T0

22�fQ
0ð0Þg þ fH0

ug ðfor closed circuit caseÞ ð27Þ

In-plane quantities P2 = [rx ry sxy Dx Dy]

T can be evaluated by the following expression
P2 ¼ U21PþU22G2Q ð28Þ
3. Numerical validation and discussions

3.1. Example 1

Consider a rectangular simply supported piezoelectric laminate composed of PZT-4 on the top and
PVDF on the bottom. Both layers have the thickness h = 0.0025 m with a = 2b. The aspect ratio of
a/H = 10 is studied. An applied distributed potential / = 10 V/m2 on the top surface with both top and
bottom surfaces traction free and Dz = 0 (open-circuit case).

The material properties are listed in the following Table 1.
Table 2 shows when the total of elements of both the linear quadrilateral element and the brick element

SOLID5 in ANSYS�, which has eight-nodes and four-degree of freedom per node, is equal, the total of
degree of frees using present linear quadrilateral element is less than that using the brick element SOLID5.

Fig. 4 shows the convergence rate of the linear quadrilateral element and the brick element SOLID5.
When the total elements of present method and ANSYS method are the same (648), the presented solution
is wmax = 1.0531E�10 (m) and the absolute error is 1.444%; but the solution of ANSYS is
wmax = 0.9927E� 10 (m) and the absolute error is 7.094%. When the total elements of ANSYS method
1
, piezoelectric, and dielectric properties of piezoelectric materials

ty C0
11 C0

22 C0
33 C0

12 C0
13 C0

23 C0
44 C0

55 C0
66

(GPa) 238.00 23.60 10.6 3.98 2.19 1.92 2.15 4.40 6.43
(GPa) 139.00 139.00 115.00 77.80 74.30 74.30 25.60 25.60 30.60
H (GPa) 126.00 126.00 118.00 79.50 84.10 84.10 23.30 23.00 23.00

e031 e032 e033 e024 e015

(C/m2) �0.13 �0.14 �0.28 �0.01 �0.01 – – – –
(C/m2) �5.20 �5.20 15.08 12.72 12.72 – – – –
H (C/m2) �6.50 �6.50 23.3 17 17 – – – –

e011=e
0
0 e022=e

0
0 e033=e

0
0

12.50 11.98 11.98 – – – – – –
1475 1475 1300 – – – – – –

H 1697.5 1697.5 1468.3 – – – – – –

Density

(kg/m3) – – – – – – – – –
(kg/m3) – – – – – – – – –
H (kg/m3) 7500 – – – – – – – –

e00 ¼ 8:854� 10�12 F/m.



Table 2
The max values wmax at the top surface (m = n =1)

Approaches Meshes, layers Total elements Total d.o.fs wmax (m) Absolute error (%)

Exact solution – – 8 1.0685e�10
Semi-analytical solution 36 · 18, 2 648 5624 1.0531e�10 1.444
ANSYS, element: SOLID5 36 · 18, 2 648 8436 0.9927e�10 7.094

56 · 28, 6 1568 46284 1.0214e�10 4.408

Fig. 4. The comparison of convergence rate.
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is 46284, wmax = 1.0214E�10 (m), the absolute error is 4.408%. Hence, it is obvious that the convergence
rate of present semi-analytical solution is faster than that of ANSYS. The same conclusion was point out by
Sheng and Ye (2002) who employed the similar linear quadrilateral element and used semi-analytical
solution to analyze the static problem of laminated composite plates.

3.2. Example 2

The natural frequencies of an aluminum clamped plate with piezoelectric sensors and actuators, as
shown in Fig. 1(b), is investigated. Assuming the sensors and actuators are bonded perfectly to the plate.
Sensors and actuators made of PZT-5H. The properties of PZT-5H are listed in Table 1. The polarity of
both sensors and actuator are in the positive transverse direction (z). The material of plate is aluminum,
modulus = 6.8E+10 N/m2, Poisson�s ratio = 0.32, density = 2800 kg/m3.

It can be noticed in Table 3 that, we use the same linear quadrilateral element and the same mesh density
(Lim et al., 2002) to discretize plate and piezoelectric patches, the natural frequencies are higher than those
Table 3
Comparison of natural frequencies (Hz) for a clamped smart plate with piezoelectric patches at the top and bottom surfaces

Approaches
Lim et al. (2002)

Meshes, layers Mode number (open circuit case)

Plate Big patches Small patches 1 2 3 4 5 6 7

Present 12 · 12, 1 2 · 2, 1 1 · 1, 1 70.4 150.5 220.2 254.4 290.6 334.8 –
12 · 12, 1 2 · 2, 1 1 · 1, 1 71.6 152.2 223.7 259.1 297.7 343.6 454.7
20 · 20, 1 4 · 4, 1 2 · 2, 1 69.6 148.2 217.8 251.6 286.7 328.5 442.2
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obtained by Lim et al. (2002). In reference (Lim et al., 2002), most part of plate was modeled by 9-node shell
elements, the transition portions were modeled by 13-node transition element, the parts of plate between
sensor and actuator were modeled by 20-node brick element. It is well-known that the 20-node brick ele-
ment, the 13-node hexahedron element and the 9-node flat-shell element lead to less unnatural stiffening of
the structure and yield better results than do the 8-node brick element, the 6-node hexahedron and the
4-node flat-shell element.

The results in Table 3 also indicate that, as the mesh density increases, the present method yields more
accurate results.
4. Conclusions

In this paper, a realistic mathematical model for the static and dynamic analysis of a plate with piezo-
electric patches is introduced. In this model, the plate and the piezoelectric patches are discretized by the
same linear quadrilateral element. The linear algebraic equations of the plate and piezoelectric patches
are established independently. The compatibility of generalized displacements and generalized stresses at
the interface between the plate and patches are maintained through uniting the algebraic equation of both
of them. The results of the numerical examples show that the current approach offers good predictive capa-
bility. Based upon the mathematical model studied in this paper, the following remarks can be made:

1. The number of variables included in the global linear equation of the structures has no relationship with
the thickness of plate and the thickness or/and the number of patches.

2. There is no restriction on the thickness of plate or piezoelectric patches.
3. The transverse shear deformation and the rotary inertia are considered in the current model.
4. The semi-analytical solution can also provide continuous generalized stresses and generalized displace-

ments at the interface between plate and piezoelectric patches.

The presented method will be modified to achieve a semi-analytical solution for the transient responses
to dynamic loading and the vibration control of the laminated plates with piezoelectric patches or piezo-
electric stiffeners.
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Appendix A

The matrices G1, G2, U11, U12, U21, U22 and X in Eq. (8)
G1 ¼

0 0 a 0

0 0 b 0

0 0 0 0

0 0 0 0

2
6664

3
7775 G2 ¼

a 0 0 0

0 b 0 0

b a 0 0

0 0 0 a

0 0 0 b

2
6666664

3
7777775
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U12 ¼ �UT
21 ¼

0 0 0 k6 0

0 0 0 0 k7
k8 k9 0 0 0

k10 k11 0 0 0

2
6664

3
7775 U22 ¼ UT

22 ¼

k12 k13 0 0 0

k13 k14 0 0 0

0 0 k15 0 0

0 0 0 k16 0

0 0 0 0 k17

2
666664

3
777775

U11 ¼

k1 0 0 0

0 k2 0 0

0 0 k3 k4
0 0 k4 k5

2
6664

3
7775 X ¼

qx2 0 0 0

0 qx2 0 0

0 0 qx2 0

0 0 0 0

2
6664

3
7775

k1 ¼ 1=C0
55 k2 ¼ 1=C0

55 k ¼ C0
33e

0
33 þ e0233 k3 ¼ e033=k k4 ¼ e033=k

k5 ¼ �C0
33=k k6 ¼ �e015=C

0
55 k7 ¼ �e024=C

0
44

k8 ¼ �ðC0
13e

0
33 þ e033e

0
31Þ=k k9 ¼ �ðC0

23e
0
33 þ e033e

0
32Þ=k

k10 ¼ �ðC0
13e

0
33 � C0

33e
0
31Þ=k k11 ¼ �ðC0

23e
0
33 � C0

33e
0
32Þ=k

k12 ¼ C0
11 � ððC0

13e
0
33 þ e033e

0
31ÞC0

13 � ðC0
13e

0
33 � C0

33e
0
31Þe031Þ=k

k13 ¼ C0
12 � ððC0

13e
0
33 þ e033e

0
31ÞC0

23 � ðC0
13e

0
33 � C0

33e
0
31Þe032Þ=k

k14 ¼ C0
22 � ððC0

23e
0
33 � e033e

0
32ÞC0

23 � ðC0
23e

0
33 � C0

33e
0
32Þe032Þ=k

k15 ¼ C0
66 k16 ¼ �e011 � e0215=C

0
55 k17 ¼ �e022 � e0224=C

0
44
Eq. (15) has the following form:
Me 0

0 Me

� �
d

dz

PeðzÞ
QeðzÞ

� �
¼

Ke
11 Ke

12

Ke
21 Ke

22

� �
Peð0Þ
Qeð0Þ

� �
þ

FeðzÞ
0

� �
where
Me ¼
Z Z

diagðNTNÞ j J j dndg J ¼

oN

on

� �
fxeg oN

on

� �
fyeg

oN

og

� �
fxeg oN

og

� �
fyeg

2
6664

3
7775

peðzÞ ¼ ½ sexzðzÞ seyzðzÞ re
zðzÞ De

zðzÞ �T QeðzÞ ¼ ½ ueðzÞ veðzÞ weðzÞ /eðzÞ �T

Ke
11 ¼

Z Z 0 0 �k8N
TaN �k9N

TbN

0 0 �k10N
TaN �k11N

TbN

NTaN NTbN 0 0

�k6N
TaN �k7N

TbN 0 0

2
6664

3
7775 j J j dndg Ke

22 ¼ �½Ke
11�

T

Ke
21 ¼

Z Z k1N
TN 0 0 0

0 k2N
TN 0 0

0 0 k3N
TN k4N

TN

0 0 k4N
TN k5N

TN

2
6664

3
7775 j J j dndg
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Ke
12 ¼

Z Z a� qx2NTN b 0 0

c d� qx2NTN 0 0

0 0 �qx2NTN 0

0 0 0 k16aN
TaNþ k17bN

TbN

2
6664

3
7775 j J j dndg

a ¼ k12aN
TaNþ k15bN

TbN b ¼ k13aN
TbNþ k15bN

TaN

c ¼ k13bN
TaNþ k15aN

TbN d ¼ k14bN
TbNþ k15aN

TaN

Fe ¼ �
R R

NTfx NTfy NTfz NTfq
� �

j J j dndg

a

b

� �
¼ J�1 o=on

o=og

� �
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